
Chap.8 Ultra-trace Analysis

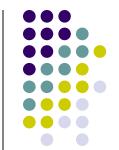
Introduction

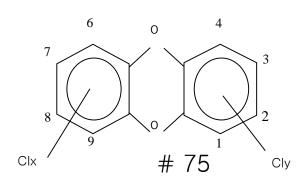
- The reason to measure low concentration
 - 1) Biomagnification
 - 2) Many of compounds of concern; high toxicity, can be used as an indication of environmental contamination
- Target compounds
 ; PCDDs, PCDFs and PCBs etc
- Analytical methods
 - -Factors affecting detection sensitivity;
 - 1.increase the chromatographic resolution of the column
 - 2. Increase pretreatment to increase the removal of hidrance
 - 3. Change detector

Poison of Dioxin

Ukrainian president

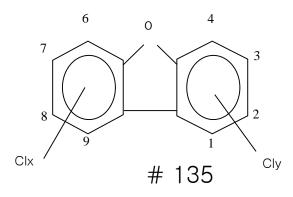
Victor, Yushchenko

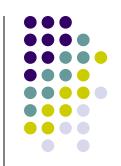



Ukrainian presidential candidate Viktor Yushchenko had blood levels of dioxin 6000 times higher than normal.

Before

After


Physicochemical Properties of dioxin



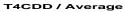
 PCDD/Fs (polychlorinated dibenzo-p-dioxins and furans)

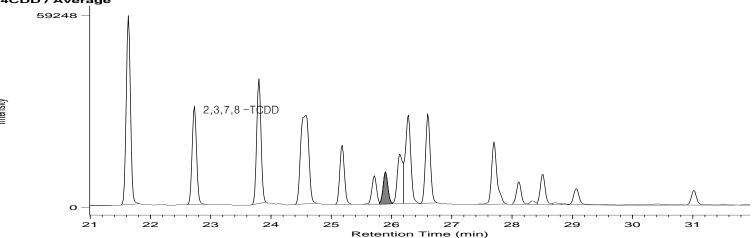
- total 210 isomer(17 toxic compounds)
- Very low water solubility (0.07 - 400 ng/l)
- Very low vapor pressure
- Strong binding affinity to organic material
- Sources; combustion and byproducts of chemical products

PCDDs/Fs TEF (toxic equivalent factor) values

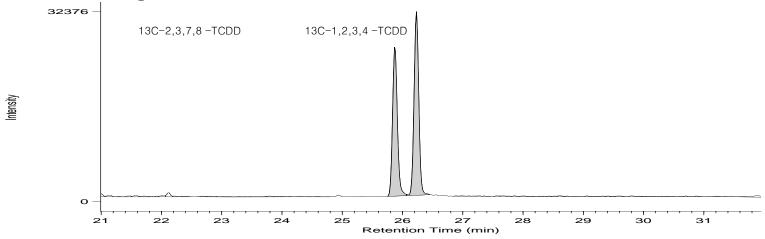
Homologue	Isomer	I-TEF	WHO
TCDD	2,3,7,8-TCDD	1	1
PeCDD	1,2,3,7,8-PCDD	0.5	1
HxCDD	1,2,3,6,7,8-HxCDD	0.1	0.1
	1,2,3,4,7,8-HxCDD	0.1	0.1
	1,2,3,7,8,9-HxCDD	0.1	0.1
HpCDD	1,2,3,4,6,7,8-HpCDD	0.01	0.01
OCDD	OCDD	0.001	0.0001
TCDF	2,3,7,8-TCDF	0.1	0.1
PeCDF	1,2,3,7,8-PCDF	0.05	0.05
	2,3,4,7,8-PeCDF	0.5	0.5
HxCDF	1,2,3,4,7,8-HxCDF	0.1	0.1
	1,2,3,6,7,8-HXCDF	0.1	0.1
	2,3,4,6,7,8-HXCDF	0.1	0.1
	1,2,3,7,8,9-HXCDF	0.1	0.1
HpCDF	1,2,3,4,6,7,8-HpCDF	0.01	0.01
	1,2,3,4,7,8,9-HpCDF	0.01	0.01
OCDF	OCDF	0.001	0.0001

• TEQ = Σ (conc × TEF) - 2,3,7,8 - TCDD based ex) 0.3 ng-TEQ/m³, 20 ng/m³

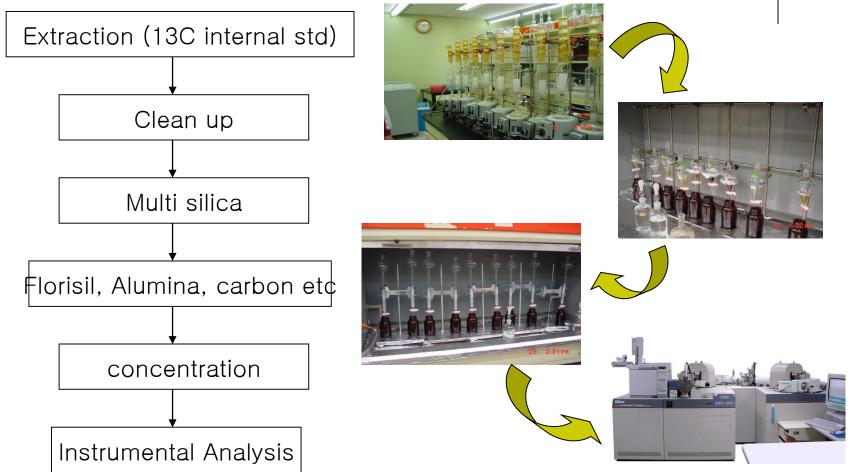

TCDD Chromatogram



Page


Compound View

Injection: seongwon



13C-T4CDD / Average

Flow Chart of analysis

-To remove DDT, pesticides and PCBs etc, second column is required because of their similar chemical structures (neutral, non-polar, high MM)

Pretreatment for PCDD/F analysis

Pretreatment		
Extraction	Soxhlet; reference extraction method Liquid-liquid extraction Accelerated solvent extraction (ASE); fast, high cost Ultrasonic extraction; easy to use, large volume of solvent	
Acid treatment GPC	To remove lipids and oxidizable compounds	
Clean-up	Silica; To remove polar compounds Alumina; To separate PCBs and Dioxin Carbon; To separate PCBs, and polychlorinated diphenyl ethers etc Cupper; To remove sulfur	

External standard method;

- -make an calibration curve with known amount of analyte and compare the peak area (height) with peak area(height) obtained by making an injection of the sample quantitated.
- -Can't consider matrix effect, can't get recovery information
- Injection volume precision is critical. Needs a uniform matrix

Internal standard method;

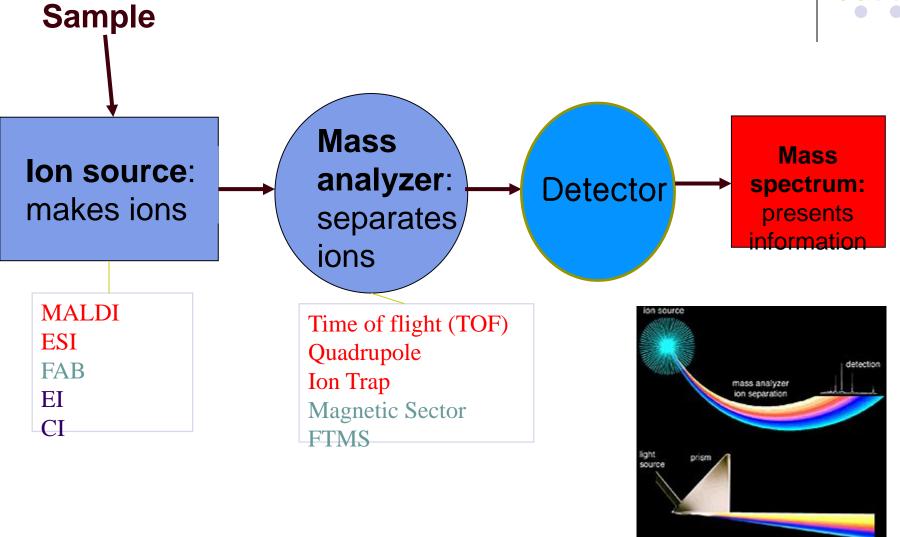
- Add a known amount of standard similar to the analyte of interest to the sample (use isotope ex; ¹³C standard)
- the most accurate type. Difficult to select the internal standard.
- injection volume precision not critical
- can get recovery of internal standard

Mass spectrometry

-Resolution ; ion separation power of mass spectrometer $R = M/\Delta M$

M : mass of an ion Δ M; difference of two separated ion

Dioxin mass range; 300 ~ 600


300/0.1 = 3000 low resolution ~ 1000 (can tell the difference unit 1) High resolution > 10,000

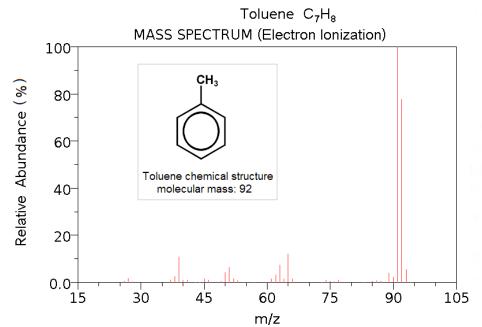
Mass spectrometry;

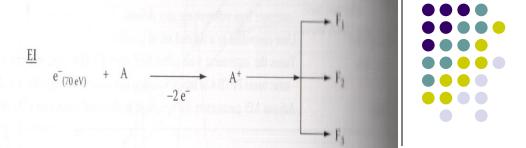
- An analytical chemistry technique that helps identify the amount and type of chemicals present in a sample by measuring the mass to charge ratio (by Wikipedia)

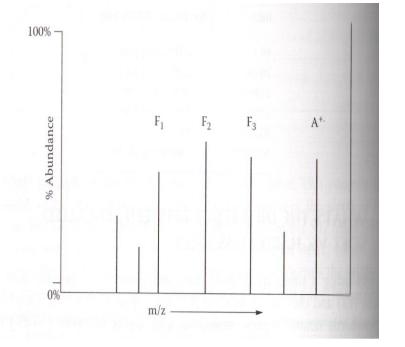
Electron ionization, El



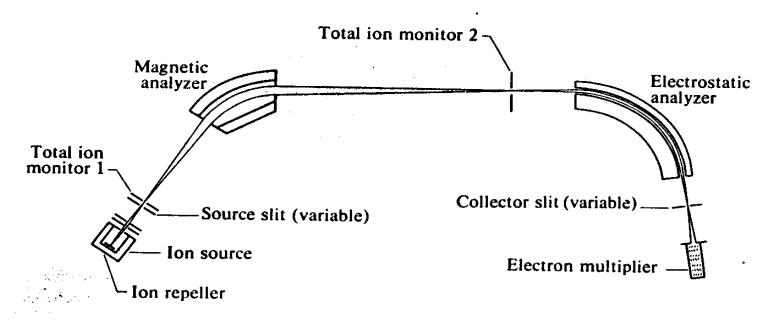
- Electrons produced from a heated filament are accelerated though an electric field at 70eV to form an electron beam
- 2. sample is thermally desorbed
- 3. electrons transfer some of their kinetic energy to the molecule M. (ionization) $M + e-(70eV) \rightarrow M+ + 2e-$
- 4. M+ → molecular ion + fragment ion + neutral fragments


hard ionization, bombard with highly energetic electrons, fragmentation


- -advantage: use of fragmentation pattern as a fingerprint with databases to identify unknowns. Structural information obtained from fragmentation pattern.
- -disadvantage: possible decomposition, too much fragmentation, often resulting in no observable molecular ion

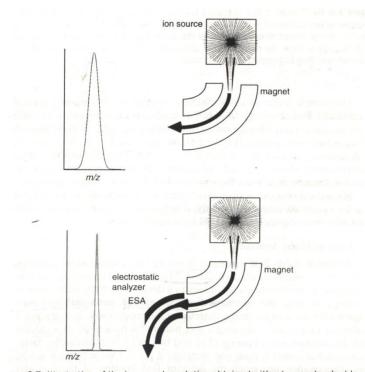

El (Electron impact)

http://departments.agri.huii.ac.il/zabam/Polaris-Q.html

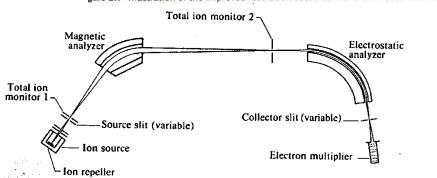


NIST Chemistry WebBook (http://webbook.nist.gov/chemistry)

Double Sector mass spectrometer


- Ionization (Electron impact (EI)) under high vacuum

Production of molecules fragment → Produced ions are focused into a beam and accelerated → Separated with mass to charge in magnetic and electrostatic field



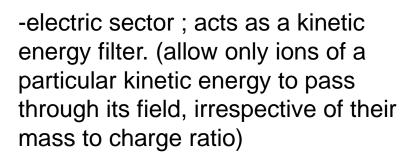
Double Sector mass spectrometer

HRGC/HRMS

gure 2.7 Illustration of the improved resolution obtained with a two-sector double

- Magnetic sector

 $M/z = R^2H^2/2V$


m; 이온질량

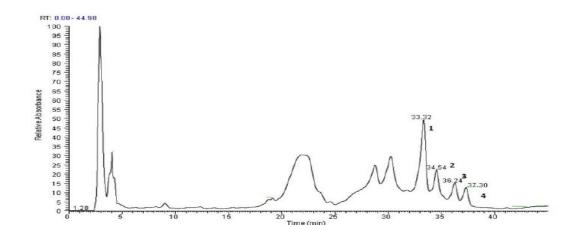
z; 이온의 전하수

R; 곡률반경

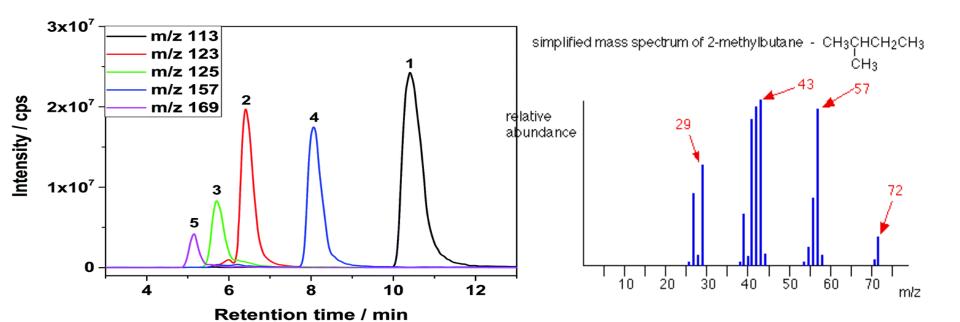
H; 자기장 세기

V; 가속전압

- double focusing
- high resolution



mass spectrum is an intensity vs. m/z (mass to charge ratio) plot


Mass chromatogram; a representation of mass spectrometry data as a chromatogram, where the x-axis represents time and the y-axis represents signal intensity

The total ion current (TIC) chromatogram represents the summed intensity across the entire range of masses being detected at every point in the analysis

-by the wikipedia

mass analysis

- -SIM; selected ion monitoring, increase sensitivity in comparison with total ion current detection
- -Scan; can obtain the mass spectrum over the required mass range

- Isotope ratio; measure the ratio of ³⁵Cl and ³⁷Cl (3:1)

Selected ion detection at two or more m/z values

ex) TCDD m/z ratio

$${}^{12}\text{C}_{12}{}^{1}\text{H}_{4}{}^{16}\text{O}_{2}{}^{35}\text{CI}_{4} = 320$$
 77
 ${}^{12}\text{C}_{12}{}^{1}\text{H}_{4}{}^{16}\text{O}_{2}{}^{35}\text{CI}_{3}{}^{37}\text{CI} = 322$ 100

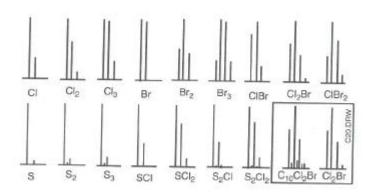


Figure 5.3
Useful isotope combinations in mass spectrometry. Isotopes of other