# Atmospheric Analysis Gases

# Sampling and analysis of gaseous compounds

## Introduction

- External environment (ambient air)

; global warming, acid rain, introduction of pollutants, etc

- Internal environment (indoor air)
- ; atmosphere in building

(gases from fuel combustion and cleaning fluids, solvents from cleaning fluids unexpected sources etc)

- concentration

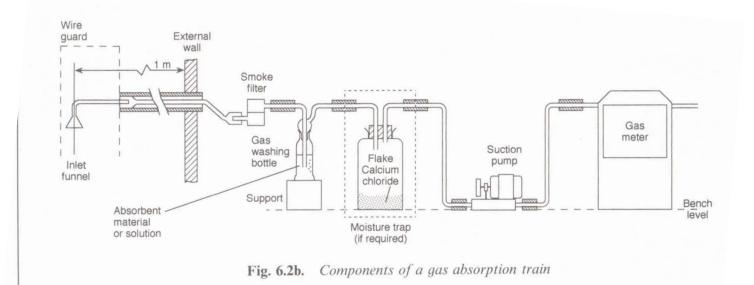
Time-weighted average conc ; avg conc over a period of time instantaneous concentration Unit ; ppm (v/v), mg/m3(mass/volumn)

Ex) NO<sub>2</sub> 650 mg/M<sup>3</sup>  $\rightarrow$  ppm (v/v)

```
MW of NO_2 = 46
```

# of mole of NO<sub>2</sub> in 1m<sup>3</sup> air ;  $650 \times 10^{-3}/46 = 14.1 \times 10^{-3}$  mol Vol occupied by 1mole at 20°C and 1atm ; 24.0 L = 0.024 m<sup>3</sup> Vol of NO<sub>2</sub> in 1m<sup>3</sup> air ;  $14.1 \times 10^{-3} \times 0.024$  m<sup>3</sup> = 33.8 ×10<sup>-6</sup> m<sup>3</sup> = 338 ppm(v/v)

Conc (ppm) = {conc (mg/m<sup>3</sup>) / relative molecular mass}  $\times$  24.0




### 대기환경기준

| 네가란증가군      |                                                             |                                                  |
|-------------|-------------------------------------------------------------|--------------------------------------------------|
| 항 목         | 기 준                                                         | 측정방법                                             |
| 아황산가스(SO2)  | 연간평균치 0.02ppm 이하<br>24시간평균치 0.05ppm 이하<br>1시간평균치 0.15ppm 이하 | 자외선형광법<br>(Pulse U.V. Fluorescence Method)       |
| 일산화탄소(CO)   | 8시간평균치 9ppm 이하<br>1시간평균치 25ppm 이하                           | 비분산적외선분석법<br>(Non-Dispersive Infrared Method)    |
| 이산화질소(NO2)  | 연간평균치 0.03ppm 이하<br>24시간평균치 0.06ppm 이하<br>1시간평균치 0.10ppm 이하 | 화학발광법<br>(Chemiluminescent Method)               |
| 미세먼지(PM10)  | 연간평균치 50,ҝg/m³이하<br>24시간평균치 100,ҝg/m³이하                     | 베타선흡수법<br>(β-Ray Absorption Method)              |
| 미세먼지(PM2.6) | 연간평균치 25ළg/m³이하<br>24시간평균치 50ළg/m³이하                        | 중량농도법 또는 이에 준하는<br>자동측정법                         |
| 오존(0₃)      | 8시간평균치 0.06ppm 이하<br>1시간평균치 0.1ppm 이하                       | 자외선광도법<br>(U.V Photometric Method)               |
| 납(Pb)       | 연간평균치 0.5#g/m³ 이하                                           | 원자흡광광도법<br>(Atomic Absorption Spectrophotometry) |
| 벤젠          | 연간평균치 5,«g/m³ 이하                                            | 가스크로마토그래프법<br>(Gas Chromatography)               |







- Sample volume ; gas meter or air-flow regulator
- Reagent ; highly specific to the analyte gas

Resistant to oxidation and to being stripped from solution

- Absorption of the analyte has to be quantitative (ppb).









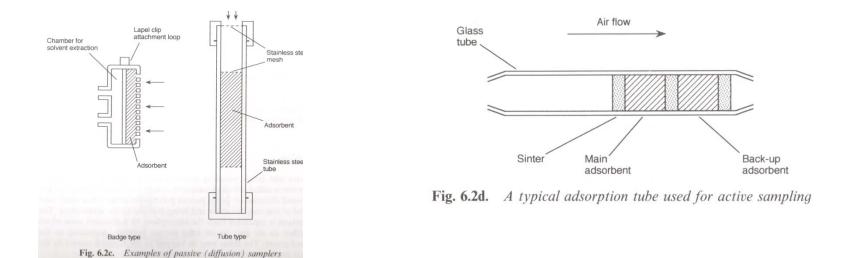


<High volume air sampler ; can sample more than 1500m3> <low volume air sampler ; only 24 m3 or less>

- Active sampling
- -Draw air through the sample tube by means of a pump (sampling rate, some tubes contain two sections of adsorbent (analysis + back up))
- lower concentration can be monitored for a given sampling time

- Desorption of sample
  - Thermal desorption or solvent extraction
  - Problem of these sampling methods -absorption and desorption efficiencies of the sampling

-possibility of overloading the adsorbent (breakthrough volume ; theoretical capacity of the adsorbent)




## Solid Adsorbents

- Commonly used for low-conc organic components

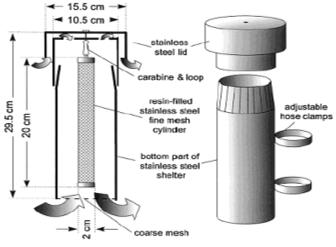
-Passive sampler (diffusion sampler);

Adsorbent contained in a small tube sealed at one end, the other exposed to air





### **Passive Air Sampler (PAS)**








### Resin-based PAS University of Toronto





## **Installation of the PAS**



These researches are conducting centering around the Canadian and American regions.







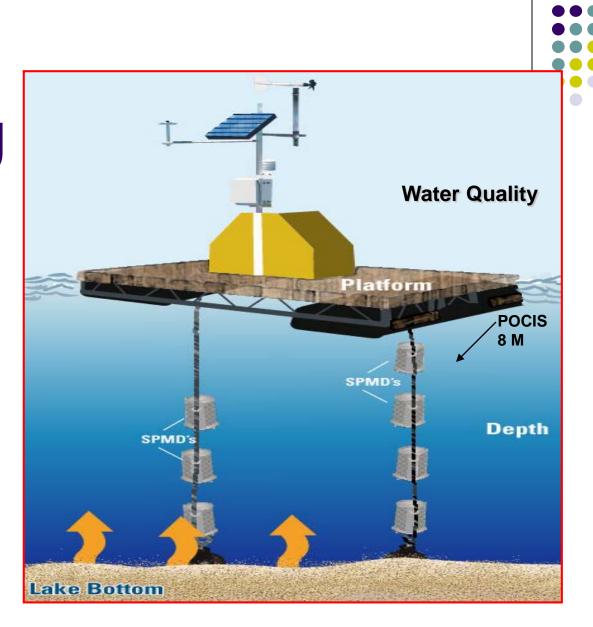








## SPMD


## (Semipermeable membrane device)

## POCIS

(Polar Organic Chemical Integrative Samplers)



## Passive Sampling Setup



# Deployment and Retrieval of Samplers







## Diffusion tubes

- Large number of sites are being simultaneously monitored
- Simple and easy to construct, no electricity
- -A short tube which is open at one and and has a liquid adsorbed on stainless-steel mesh at the closed end.
- -Rely on the natural diffusion of the gas into the liquid the rate of adsorption is determined by the rate of diffusion of the gas
- -Commonly used for NO<sub>2</sub> (Ex ; adsorbent liquid is triethanolamine, spectrometric analysis (550nm))
- -Precision of the technique is not large hard to obtain exact sampling volume, only collect gas phase of chemicals
- Low cost of the apparatus



## Determination of instantaneous concentrations

### - Often based on spectrometric techniques

- -Light emission (chemiluminescence and fluorescence) ; most sensitive Nitrogen oxides, sulphur dioxide and ozone etc
- Chemiluminescence and Fluorescence

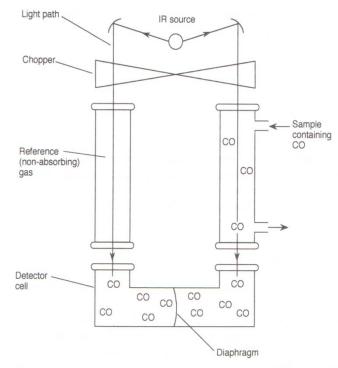
1) NO + O<sub>3</sub> → NO<sub>2</sub><sup>\*</sup> + O<sub>2</sub> NO<sub>2</sub><sup>\*</sup> → NO<sub>2</sub> + hv  $\lambda$ =600~875nm (DL ; 10 ppb (18 ug/m3))

2) O<sub>3</sub> react with ethlylene and monitor light emission at 430nm (DL ;1ppb, 2ug/m<sup>3</sup>)

3) SO<sub>2</sub> ; without chemical pretreatment. Fluorescence spectrometry (DL;2ppb,5ug/m<sup>3</sup>)



UV photometric ambient O3 analyzer




## Infrared Spectrometry

-used for monitoring various inorganic gases and organic vapours -complex spectra and each molecule gives a unique absorption pattern

- Dispersive infrared spectrometer ; absorption of radiation after separating IR and measure the different wavelength

-non-dispersive spectrometer; no spectral spectral separation ex; CO, CO<sub>2</sub>,SO<sub>2</sub>, acetylene, methane and water etc



Measure the oscillation of the detector cell Each gas needs a separate instrument

-Difficult to measure many species because of possibility of overlap of absorptions in multi-component mixtures



Fig. 6.3b. Non-dispersive infrared carbon monoxide analyser

## Electrochemical sensors

- -Use different sensing head being required for each gas (ex; CO<sub>2</sub>, Cl<sub>2</sub>, HCN, HCI, H<sub>2</sub>S, SO<sub>2</sub>)
- -The reaction of the analyte gas at an electrode produce a current; proportional to its gas phase concentration

### Gas Detector tubes

- -Hand held and easy to use instrument ; often measure internal atmosphere where high concentrations of hazardous can quickly accumulate
- -Packed with an analyte specific reagent adsorbed on inert solid ex) Pb<sup>2+</sup> + H<sub>2</sub>S → PbS + 2H<sup>+</sup> (black lead sulphide) CO<sub>2</sub> + N<sub>2</sub>H<sub>4</sub> → H<sub>2</sub>N-NH-CO<sub>2</sub>H (change to purple)
  - Precision ; varied with compound types
  - -Interference; separate zone of reactive solid is needed to remove potential common interferences



## Gas Chromatography

-Can be used as portable instrument ;

onsite monitoring or permanently positioned at the sampling point

- Portable GC ; decreases in size, mass and # of gases use column to separate components at ambient (near) T. (don't need oven and additional gas supplies)
- -Sampling
  - container ; sampling bulb, evacuated sample container sampling bag gas-tight syringe. Sampling loop.
  - problem of on-site sampling
    - ; need large sample vessels, difficult to check for leakage or contamination loss by rxn on the walls of the vessel, injection of large volume disturbs the carrier gas flow
- Chromatographic analysis
  - gas-solid chromatography ; inorganic gases and low molecular mass organics molecular sieves ; separate gases in order of molecular size silicagel column ; suitable for carbon dioxide conventional gas-liquid column ; may be used for VOCs



- Detector for inorganics
  - -Thermal conductivity ; for all gases low sensitivity (DL ; a few hundred ppm) low mass carrier gas increase sensitivity (ex ; H2 but not safe, He)
  - -Flame ionisation detector ; not easily detect most inorganic gases, can detect organic components, easy to portable and maintain of flame
  - Method for determining total VOCs without separation
    - Inject a sample directly into FID without column





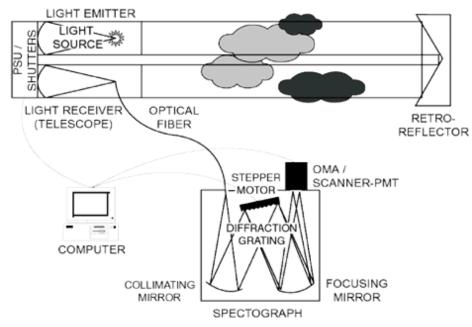









## Remote sensing


(the acquisition of information about an object or phenomenon without making phy al contact with the object)

- Spectrometric methods ; long path length can measure low conc compounds.
- UV region ; SO2, NO2. O3
- -IR region; compounds which do not absorbe in the UV region (CO2 and water hinder)
- Light source ; pulsed laser





### <Configuration of UV–DOAS (dedicated outdoor air system) > $\sqrt{}$

